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An analytical approach is proposed for studying the elastic-plastic behavior of short fiber
reinforced metal matrix composites under tensile loading. In the proposed research, a micro-
mechanical approach is employed considering an axi-symmetric unit cell including one fiber
and the surrounding matrix. First, the governing equations and the boundary conditions are
derived and the elastic solution is obtained based on some shear lag type methods. Since
under normal loading conditions and according to the fiber material characteristics the me-
tal matrix undergoes plastic deformation, while the fiber remains within the elastic region,
a plastic deformation is obtained for the matrix under each small tensile loading step. Then,
the elastic-plastic stress transfer behavior of the composite is studied considering this plastic
deformation. The results are finally compared with the numerical results obtained from the
FE analysis of the considered micromechanical model.
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1. Introduction

The use of metal matrix composite materials (MMC) in aerospace structures and engine parts
has become more frequent recently. Stress transfer from the matrix to the fiber is known as
the most important mechanism governing the deformation and the fracture response of such
MMCs. The stress transfer characteristic of fiber reinforced composite materials under various
mechanical and thermal loadings has been studied frequently.
Since the analytical study of the behavior of MMCs and the assumptions involved are com-

plex, the majority of the investigations is limited to the numerical finite element or experimental
methods. Recent efforts for analytical study of such materials have led to development of vario-
us micromechanical models including the fiber and the surrounding matrix, which considering
several simplifying assumptions, have tried to interpret the behavior of MMCs. Due to the com-
plexity of the model and various assumptions involved, most of the performed studies have been
limited to the elastic behavior analysis of the fiber and the matrix. Though, since the matrix is
metallic and thus the plasticity will occur at low strains, unpredicted failure may happen in the
parts made from MMCs.
The solution to the concerned problem consists of two parts, first the elastic analysis of the

MMCs and then the plastic solution for the metal matrix, which is based on the stress/strain
fields obtained from the former elastic analysis. In general, numerous methods have been deve-
loped for elastic analysis of such MMCs. One of the main approaches to such a problem is the
Shear Lag Method (Cox, 1952; Kelly, 1966; Piggott, 1980; Fukuda and Chou, 1981; Nardone
and Prewo, 1986; Clyne, 1989; Karbhari and Wilkins, 1991; Starink and Syngellakis, 1999; Gao
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and Li, 2005), which due to the good description of the load transfer mechanism from the fiber
to the matrix is of major importance and application. But, it should be noted that the various
simplifying assumptions involved are considered as the main disadvantage of this model. Since
due to such assumptions, the model is not that much accurate, it has been modified by others
authors, see Hsueh (1988-1999), leading to increased efficiency, enabling the calculation of the
stresses at the end of the fiber and the shear stress at the fiber/matrix interface. In this method,
called the Imaginary Fiber Technique, the problem is initially solved for a continuous long fiber,
and by means of applying the boundary conditions, the consistency condition, and considering a
fiber with the same matrix material at the end section, the solution to the short fiber problem is
obtained accordingly. The next effort for modeling the concerned elastic problem was performed
by Jiang et al. (1998, 2004). In the initial steps, he also applied some of the previous simplifying
assumptions involved, but eliminating some of these assumptions in the final stages, he achieved
a better compatibility with the existing FE results.

After this brief review of the existing solutions for the elastic analysis of the current problem,
some of the efforts for solving the plastic problem will be discussed shortly. The Shear Lag
Method first introduced by Cox (1952) was vastly used due to its mathematical simplicity and
its good prediction of this mechanism. After the elastic analysis of the existing problem, Jiang
et al. (2004) studied the plastic behavior of short fiber reinforced MMCs, applying the Shear
Lag Method. In this study, the effect of the matrix plastic deformation on the load transfer
mechanism has been defined via introduction of a plastic strain. The results show that the
efficiency of the load transfer in the elastic region decreases due to local plastic deformations
in the matrix. Though, in this study, a very simple approach has been used for plastic analysis
of the matrix. Since the general shear lag model applied is not capable of predicting the stress
distribution in the matrix, the problem has been simplified by means of assuming an average
axial plastic deformation in the matrix, defined by some linear distribution assumptions made
later. Furthermore, the plastic strain term considered has been limited to the axial strain only,
and the effect of the shear stress has been totally neglected by applying an approximate relation
between the axial stress and the average axial plastic deformation in the matrix.

In the present study, an analytical approach is proposed for studying the elastic-plastic be-
havior of short fiber reinforced metal matrix composites under small tensile loading steps. In the
proposed research, employing a micromechanical approach, an axi-symmetric unit cell including
one fiber and the surrounding matrix is considered. Using a shear-lag based formulation, first,
the governing equations and the boundary conditions are derived and the elastic solution is
obtained for both the fiber and matrix. Since under normal loading conditions and according to
the fiber material characteristics, the metal matrix undergoes plastic deformation first, plastic
deformation is considered in the matrix. The governing relations are then obtained, considering
both axial and shear stress terms, e.g. the equivalent stress and the plastic strain components.
Finally, an approximate estimate for plastic strain distribution in the matrix and the effects of
this plastic deformation on the stress transfer mechanism of the composite are resulted. Some
numerical results obtained by FE analysis of the model are shown as well.

2. Mathematical formulation

In order to study the elastic-plastic behavior of MMCs under simple tensile loading, a cylindrical
axi-symmetric unit cell consisting of a fiber and the surrounding matrix has been considered as
shown in Figs. 1a and 1b. The cell is subjected to a uniform tensile stress σ0.

According to FEM results and the governing equations, which can be admitted by common
sense also, the plastic deformation in the matrix will start at somewhere in the adjacent region
to the fiber, region I shown in Fig. 1b, due to the low matrix yield stress and high stress
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Fig. 1. (a) Micromechanical unit cell. (b) Axi-symmetric model

concentrations in that region. Considering the occurrence of plastic deformation in the matrix
and focusing on region I of matrix from now on, the stress-strain relations for the matrix in this
region can be re-written as (Mendelson, 1986)

εmr =
1

Em
[σmr − νm(σmz + σmθ )] + εpr εmθ =

1

Em
[σmθ − νm(σmr + σmz )] + εpθ

εmz =
1

Em
[σmz − νm(σmθ + σmr )] + εpz εmrz =

1 + νm

Em
τmrz + ε

p
rz

(2.1)

where Em and νm are Young’s modulus and Poisson’s ratio of the matrix, respectively, and
εp terms define the plastic strain components. It is clear though that as the loading is increased,
the plastic region expands within the matrix, while the points for which the yield criterion is
not satisfied yet, still remain in the elastic region, with εp terms being zero in Eqs. (2.1). To
summarize, at each loading step, the yield criterion must be checked for the matrix in order to
determine the plastic region as will be shown later.

Considering the axi-symmetry of the model, and thus neglecting the derivatives with respect
to θ, the general equilibrium equations for both the fiber and matrix can be written as

∂σz
∂z
+
∂τrz
∂r
+
τrz
r
= 0

∂σr
∂r
+
∂τrz
∂z
+
σr − σθ
r
= 0 (2.2)

Assuming ∂σmz /∂z = g(z) and using Eq. (2.1)1, it can be shown that (Gao, 2005)

τmrz(z) =
a

b2 − a2
(b2

r
− r
)

τi(z) (2.3)

where τi(z) is the shear stress at the fiber/matrix interface. According to the last of the strain-
-displacement relations

εr =
∂u

∂r
εθ =

u

r
εz =

∂w

∂z
εrz =

1

2

(∂u

∂z
+
∂w

∂r

)

(2.4)

with u being the radial and w the axial displacement, and neglecting the term ∂um/∂z for ma-
trix, according to the assumption that |∂um/∂z| ≪ |∂wm/∂r|, which due to the tensile loading
condition and the symmetry of the model is a reasonable assumption, the radial displacement
of the matrix wm is resulted as follows

wm(r, z) = wma +

wmb − wma − 2
b
∫

a
εprz(r, z) dr

b2 ln
(

b
a

)

− b2−a2
2

[

b2 ln
( r

a

)

− r
2 − a2
2

]

+ 2

r
∫

a

εprz(r, z) dr (2.5)

where wma is the matrix axial displacement at the interface r = a, and w
m
b is the axial

displacement at r = b. From the other hand, and assuming that the radial and tangential
stresses in the matrix are much smaller compared to the axial stress term, |σmr + σmθ | ≪ σmz ,
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and thus neglecting the term (σmr +σ
m
θ ) in Eq. (2.1)3, differentiating Eq. (2.5) with respect to z

and finally considering the strain-displacement relations, Eqs. (2.4), it can be shown that

σmz (r, z) = σ
m
a + E

mεpz(a, z) + 2E
m ∂

∂z

r
∫

a

εprz(r, z) dr

+

σmb + E
mεpz(b, z) − σma −Emεpz(a, z)− 2Em ∂∂z

b
∫

a
εprz(r, z) dr

b2 ln
(

b
a

)

− b2−a2
2

·
[

b2 ln
( r

a

)

− r
2 − a2
2

]

− Emεpz(r, z)

(2.6)

where σma and σ
m
b are the matrix axial stresses at r = a and r = b, respectively. Writing the

equilibrium equation of a cross section of the cell, it can be concluded that

a2

2
σfz (z) +

b
∫

a

rσmz (r, z) dr =
b2

2
σ0 (2.7)

in which σfz (z) is the average axial stress in fiber. Substituting σ
m
z (r, z) from Eq. (2.6) into (2.7)

and re-writing Eq. (2.6) with the resulted σmb , axial stress in the matrix can be found as

σmz (r, z) = σ
m
a + E

mεpz(a, z) − Emεpz(r, z) + 2Em
∂

∂z

r
∫

a

εprz(r, z) dr

+
b2 ln
(

r
a

)

− 1
2
(r2 − a2)

b4 ln
(

b
a

)

− 1
4
(b2 − a2)(3b2 − a2)

{

− a2σfz + b2σ0 − (b2 − a2)[σma + Emεpz(a, z)]

− 4Em ∂
∂z

b
∫

a

r

r
∫

a

εprz(r, z) dr dr + 2E
m

b
∫

a

εpz(r, z)r dr

}

(2.8)

On the other hand, from the first of equilibrium equations (2.1)1 for fiber using the average axial
stress introduced in Eq. (2.7), the following relation known as shear lag equation can be derived

dσfz (z)

dz
= −2
a
τi(z) (2.9)

Combining Eq. (2.9), Eq. (2.3), stress-strain relations, Eqs. (2.1) and strain-displacement equ-
ations Eqs. (2.4) and finally substituting for σmz (r, z) from Eq. (2.8), the following relation will
be derived for the fiber average axial stress σfz (z)

d2σfz (z)

dz2
= − b2 − a2

a2(1 + νm)
[

b4 ln
(

b
a

)

− 1
4
(b2 − a2)(3b2 − a2)

]

·
{

− a2σfz + b2σ0 − (b2 − a2)[σma + Emεpz(a, z)]

− 4Em ∂
∂z

b
∫

a

r

r
∫

a

εprz(r, z) dr dr + 2E
m

b
∫

a

rεpz(r, z) dr

}

(2.10)

As can be seen, the only unknown term in Eq. (2.10) is the matrix axial stress at the interface σma ,
which can be derived as follows. The assumption of perfect bond between the fiber and matrix



An analytical study on the elastic-plastic behavior of metal matrix composites... 327

at the interface implies the boundary condition of equality of axial strains along the interface.
Referring to Eq. (2.1)3 and remembering the previously made assumption according to which
the summation of the radial and tangential stresses were neglected compared to the axial term
of stress, the equality of axial strains at the boundary will lead to the following

σma = E
m
(σfz (z)

Ef
− εpz(a, z)

)

(2.11)

where Ef is Young’s modulus of the fiber. It should be noted that the stress-strain relation used
for the fiber is in the elastic state, which is obvious according to the basic assumption of the
problem, previously stated in the introduction.
Therefore, substituting Eq. (2.11) into Eq. (2.10) and solving the resulted ordinary differential

equation, one can easily derive the relation for fiber average axial stress, including the effect of
plastic deformation in the matrix

σfz (z) = exp(−
√
ABz)

{

C1 −
1

2

√

A

B

∫

exp(
√
ABz)[C + F (z)] dz

}

+ exp(
√
ABz)

{

C2 +
1

2

√

A

B

∫

exp(−
√
ABz)[C + F (z)] dz

}

(2.12)

in which

A =
b2 − a2

a2(1 + νm)
[

b4 ln
(

b
a

)

− 1
4
(b2 − a2)(3b2 − a2)

]

B = a2 + (b2 − a2)E
m

Ef
C = −b2σ0

F (z) = 4Em
∂

∂z

b
∫

a

r

r
∫

a

εprz(r, z) dr dr − 2Em
b
∫

a

rεpz(r, z) dr

(2.13)

Using Eq. (2.9), fiber shear stress can be derived accordingly

τi(z) = −
a

2

{

−
√
AB exp(−

√
ABz)

[

C1 −
1

2

√

A

B

∫

exp(
√
ABz)[C + F (z)] dz

+
√
AB exp(

√
ABz)

[

C2 +
1

2

√

A

B

∫

exp(−
√
ABz)[C + F (z)] dz

}

(2.14)

As cleared at the beginning of the formulation, all the above discussions up to this point are valid
for region I of the matrix shown in Fig. 1b and the fiber within 0 ¬ z ¬ l range. Considering
the l ¬ z ¬ l′ area, the same approach as the one proposed by Hsueh (1995), Hsueh and Becher
(1996), known as the Imaginary Fiber Technique has been applied. In other words, the fiber
is considered to be continuous along the whole cell length, with the l ¬ z ¬ l′ region being
known as the imaginary fiber. The same treatment as the one discussed above is applied to this
fiber, except that at the end of the process, the material properties of this imaginary section
will be replaced by the matrix properties. Considering the local plastic deformation in region
I of the matrix as discussed, the same argument with Jiang et al. (2004) has been used as
follows. As stated in that study, when the matrix local plastic deformation occurs in region I,
it will also occur in the region near the fiber end face with the same magnitude. Therefore, the
stress transfer in the fiber end region will not be affected by the plastic deformation in the fiber
region. Following such an argument, the governing differential equation for the imaginary fiber
axial stress can be written as
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d2σ′fz (z)

dz2
= − b2 − a2

a2(1 + νm)
[

b4 ln
(

b
a

)

− 1
4
(b2 − a2)(3b2 − a2)

](−b2σ′fz + b2σ0) (2.15)

Therefore, the axial and shear stress for imaginary fiber can be derived as follows

σ′fz (z) = C3 exp(−
√
AB′z) +C4 exp(

√
AB′z)− C

B′

τ ′i(z) = −
a
√
AB′

2

[

−C3 exp(−
√
AB′z) + C4 exp(

√
AB′z)

]

(2.16)

where constants A and C are previously defined in Eq. (2.13)1 and (2.13)3, while B
′ is

B′ = b2 (2.17)

As can be seen in Eqs. (2.12), (2.14) and (2.16), four unknown constants C1, C2, C3 and C4
are still to be calculated. For this reason, the following boundary conditions are applied to the
axial and shear stresses previously derived

σ′fz =

{

σ0 at z = l′

σfz at z = l
τ ′i =

{

τi at z = l

0 at z = 0
(2.18)

In order to calculate the plastic deformation and its effect on stress transfer in the composite,
first of all, the yield criterion should be determined in order to indentify the region in which the
plastic deformation occurs under each loading step. Considering the von-Mises yield criterion
(Mendelson, 1986) as follows

σe = σy (2.19)

the yielding will occur as soon as the equivalent stress σe in a certain point reaches the yield
stress σy in which the equivalent stress is defined as

σe =
1√
2

√

(σr − σθ)2 + (σθ − σz)2 + (σz − σr)2 + 6τ2rz (2.20)

According to the previously stated assumption, |σmr + σmθ | ≪ σmz , the yield criterion for the
current problem can be restated as

√

σmz
2 + 3τmrz

2 = σy (2.21)

As described before and will be shown in the numerical results, it is evident that the yielding
in the matrix will start at the interface somewhere at the end of the fiber. Thus, substituting
for σmz and τ

m
rz at (r, z) = (a, l) into Eq. (2.21), the critical stress σ0 for which the yielding

will start for the first time in the composite, will be calculated. Thereafter, for stress values
above this critical threshold, the region in the matrix in which the plastic deformation occurs
will be expanded. In order to obtain an estimate for the behavior of the model considering
plastic deformations in the matrix, the relations obtained up to this point will be simplified
as follows. The plastic strain increments are related to the stresses through the yield criterion
and the associated flow rule. According to the von-Mises yield criterion, Eq. (2.19) previously
applied and the Prandtl-Reuss relations considered here, the z and rz strain increments can be
obtained as follows (Mendelson, 1986)

∆εpz =
∆εep
2σe
(2σz − σr − σθ) ∆εprz =

3

2

∆εep
σe
τrz (2.22)
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in which

∆εep =

√
2

3

√

(∆εpr −∆εpθ)2 + (∆ε
p
θ −∆ε

p
z)2 + (∆ε

p
z −∆εpr)2 + 6∆εprz2 (2.23)

Assuming a proportional loading, i.e. considering a loading level for which the yielded area is
relatively small compared to the fiber diameter, it can be assumed that the stress state in the
yielded region in the matrix is the same as the elastic state, e.g.

σmz
E(r, z)

τmrz
E(r, z)

=
σmz
P (r, z)

τmrz
P (r, z)

(2.24)

where E and P superscripts refer to elastic and plastic stress fields, respectively. With such
an argument and rewriting Eqs. (2.22) for the proportional loading case and thus omitting the
increment notation ∆ according to the deformation or total theory of plasticity and remembering
that the radial and axial stresses were neglected compared to the axial term, the following relation
can be derived between z and rz plastic strains

εpz
εprz
=
2

3

σz(r, z)

τrz(r, z)
(2.25)

Thereafter, as previously stated, considering small loading steps, and thus a small plastic region,
a linear distribution for plastic deformations can be assumed over the plastic region for a certain
loading step

εpz(r, z) =
εpz1(a− r)
da

− ε
p
z1(l − z)
dz

+ εpz1

εprz(r, z) =
εprz1(a− r)
da

− ε
p
rz1(l − z)
dz

+ εprz1

(2.26)

in which εpz1 and ε
p
rz1 are the maximum values of the plastic deformation at (r, z) = (a, l),

and da and dz are radial and axial boundaries of the plastic region, respectively. The analysis
applied will be then as follows. For a loading step σ01 greater than the initial critical stress,
the yield boundaries, e.g. da and dz in Eqs. (2.26), in the matrix are determined. Using Eq.
(2.12), (2.14) and (2.16) and rewriting the relations, substituting for one of the plastic strains in
terms of the other according to Eq. (2.25) at (r, z) = (a, l), the axial stress in the fiber and the
interface shear stress will be calculated as functions of the considered plastic strain. Thereafter,
substituting the results into Eq. (2.8) and (2.3), the axial and shear stress in the matrix will be
determined accordingly. Calculating the equivalent stress for the matrix, the equivalent plastic
strain will be determined from the uni-axial stress-strain curve as follows

σe = σy +
EEp

E − Ep ε
p
e (2.27)

in which Ep is the plastic modulus in the uni-axial stress-strain curve and εpe is the equivalent
plastic strain, previously defined incrementally in Eq. (2.23). It should be noted that this relation
is valid for a perfectly plastic material. Also, since the radial and the tangential plastic strains
are considered to be

εpr = ε
p
θ = −

1

2
εpz (2.28)

the equivalent strain term, Eq. (2.23), can be simplified to

εep =

√
2

3

√

9

2
εpz
2
+ 6εprz

2
(2.29)

Finally, solving Eq. (2.27) at (r, z) = (a, l) by a MAPLE code developed, the plastic strain
terms, and therefore the stresses, can be derived.
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3. Results and discussion

In order to understand the effects of the plastic deformation in the matrix on stress transfer
behavior of the composite, the effective stresses contributing in this mechanism, σfz and τi,
will be studied. The calculations are done for Al6061/SiC20% composite, with the following
specifications

Table 1. Geometrical specifications of Al6061/SiC20% composite

s k f ′ f

5 1 0.342 0.2

Table 2. Mechanical properties of Al6061/SiC20% composite

Material ρ [g/cm3] E [GPa] Ep [GPa] υ

Al6061 2.7 68.3 5.667 0.345

SiC 3.2 470 – 0.17

Figure 2a shows the equivalent stress distribution in the matrix for an arbitrary ela-
stic loading. It is clear that this stress is maximum at the interface, at the fiber end point
(r, z) = (a, l), as claimed before. As shown in this figure, for an applied loading of σ0 = 274MPa,
the equivalent stress at the critical point of (r, z) = (a, l) reaches the yield value σy = 276MPa
for the first time. Thereafter, comparing this equivalent stress with the yield stress according
to the von-Mises criterion, the expansion of plastic region in the matrix for different loading
steps σ0 is shown in Fig. 2b. As can be seen, the boundaries of this plastic region da and dz
in Eqs. (2.26) expand with the increase of the loading applied. As described before, the relation
between the two plastic strain components can be estimated from Eq. (2.25). The calculated
value at (r, z) = (a, l) has been rounded to 1 for simplicity, i.e. εpz1 = ε

p
rz1 and the z and rz

terms of the plastic strain have been considered to be equal εpz(r, z) = ε
p
rz(r, z). The variation

of the plastic strain components have been previously defined by linear functions in Eqs. (2.26).
With this assumption, the fiber average axial stress, the interfacial shear stress, and the z/rz
terms of the matrix plastic strain have been calculated for each loading step as shown. The
plastic strain functions are illustrated in Figs. 3a and 3b at z = l and r = a, respectively, for
different loading steps.

Fig. 2. (a) Matrix equivalent stress for σ0 = 274MPa, (b) expansion of the plastic region in the matrix
model

General behavior of the shear stress at r = a and fiber average axial stress are shown in
Figs. 4a and 4b, respectively. A closer view of these stress curves are shown in Figs. 5a and 5b
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Fig. 3. εp
z
(r, l)/εp

rz
(r, l), plastic strains at: (a) z = l, (b) r = a

Fig. 4. Shear stress at r = a (a) and fiber average axial stress (b) for σ0 = 290MPa

Fig. 5. Shear stress at r = a (a) and fiber average axial stress (b) for σ0 = 290MPa

for a small region about the fiber end z = l. The stresses have been calculated for σ0 = 290MPa
both for the elastic and elastic-plastic conditions. As can be seen, the results comply with the
initial expectations that the occurrence of plasticity in the matrix will reduce the efficiency of the
load transfer mechanism in the composite. Since the shear stress at the interface and the axial
stress in the fiber are of major importance in the process of the load transfer from the matrix to
the fiber, this decrease in their values will affect the initially expected load bearing characteristics
of the material. Thereafter, Figs. 6a and 6b show the variation of the shear stress at the interface
and the fiber average axial stress for different loading steps. It can be noted that increasing the
loading, the stresses in presence of the plastic strains will increase more slowly compared to the
elastic condition. This is another verification of the adverse effect of the plasticity in the matrix
over the mechanical characteristics of the MMCs. Finally, some numerical FEM results using
ANSYS 10 can be found in Fig. 7 to Fig. 9 for a general comparison. Taking a glance over these
results, first of all it can be noticed that the assumption of the equality of the plastic strain
terms, εpz(r, z) = ε

p
rz(r, z), is acceptable within the loading region applied. Furthermore, as can

be seen, the linear distribution considered for plastic strain distribution over the plastic region



332 S. Khosoussi et al.

is also a reasonable assumption for the considered loading steps. Thereafter, the values derived
numerically for the sample loading of σ0 = 290MPa show a relatively good compatibility with
the theoretical results obtained.

Fig. 6. Shear stress at r = a (a) and fiber average axial stress (b), different loadings σ0

Fig. 7. Numerical results – εp
z
(r, l) at: (a) z = l and (b) z = l

Fig. 8. Numerical results – εp
z
(a, z) at: (a) r = a and (b) r = a

Fig. 9. Numerical results – shear stress at r = a (a) and fiber average axial stress (b) for σ0 = 290MPa
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4. Conclusion and remarks

In the present study, an analytical shear lag based model was proposed to study the effects of
plastic deformations in the matrix on overall stress transfer behavior of a fiber reinforced metal
matrix composite. For this reason, a cylindrical unit cell consisting of a fiber and the surrounding
metal matrix was considered under tensile loading. Writing the shear lag based relations for this
model, the stress terms for both the matrix and fiber were calculated considering the occurrence
of plasticity in the matrix due to the ductility of the metal matrix compared to the brittle
characteristics of the hard fiber. Unlike a relatively similar study performed by Jiang et al.
(2004a) based on the shear lag approach, the present work has taken into account the stress
distribution in the matrix and has derived the governing relations for that region. Also, the effect
of the equivalent stress, i.e. both shear and axial stresses, have been considered rather than the
mere axial stress applied in that work. Moreover, both of the plastic strain terms, i.e. axial and
shear strain components have been taken into account also via the equivalent plastic strain term
in the plasticity relations. Furthermore, the performed study is able to predict the plastic region
boundaries in the matrix for a given loading and is capable of proposing an estimate for the
growth of the yielded region with an increase in the loading.

To summarize, having obtained the shear lag based relations for the problem, the plastic
strain distribution in the matrix has been derived for a given loading provided that the yield
area is small compared to the fiber diameter. Thereafter, the effects of these plastic strains on
the interface shear and the fiber average axial stress have been obtained. It was also verified
that the occurrence of local plasticity in the matrix has an adverse effect over the stress transfer
efficiency of the composite via reduction in these two critical load transfer mechanisms compared
to the stress distribution in the absence of such deformations. Moreover, it was shown that as
the local plastic deformation occurs in the matrix, the increase in stresses happens more slowly
compared to the elastic case, which is another evidence for the efficiency loss in the presence of
the matrix plasticity.
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